
Abstract — The a priori known field behavior in the 

vicinity of simple geometrical shapes is used to derive a new 

procedure for material averaging in the Finite Integration 

Technique. We investigate a two-dimensional setup so far. The 

accuracy of a staircase approximation of wave scattering at a 

dielectric cylinder is improved and the resulting errors are 

well below the common facet-weighted averaging procedures. 

I. INTRODUCTION 

The accuracy of simulation methods based on Yee-like 

Cartesian grids suffer from the staircasing effect. This 

effect occurs due to the approximations that have to be done 

when curved shapes are part of the computational domain. 

One possibility to avoid this effect is the use of conformal 

grids, like shown in e.g. [1], other possibilities to face this 

problem may be advanced material averaging methods. In 

this work we focus on an averaging procedure, which uses 

not only the material information but also the known field 

behavior in the vicinity of a simple geometrical shape. This 

idea is motivated by the usage of local basis functions in the 

flexible local approximation methods introduced by 

Tsukerman in [2]. Preliminary work has been done 

modifying the material matrices of the Finite Integration 

Technique (FIT) [3] in the vicinity of sharp edges [4]. 

 In this contribution we show how to include a priori 

known analytic results locally into the material matrix for 

circular boundaries in a rectangular grid, in order to 

improve the overall accuracy. The modifications are only 

included in the direct vicinity of the curved object.  

II. FINITE INTEGRATION TECHNIQUE 

The FIT is based on a spatial segmentation of the 

computational domain by a dual-orthogonal grid pair, the 

primary grid G and the dual grid G . The degrees of 

freedom of the method are the so-called integral state 

variables, defined as integrals of the electric and magnetic 

field vectors over edges ,i iL L and facets ,j jA A of the 

primary grid G and the dual grid G , respectively: 
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Using vector notation the Maxwell’s grid equations can be 

written as 

d

dt
 Ce b      
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with the material relations 
d M e , 

j M e  and 

b M h . The topological curl-operators C  and C  

contain the entries {-1;0;1} only. The material matrices 

map the state variables from the primary to the dual grid, 

which causes the necessity to introduce some averaging at 

the material interfaces. For the permittivity matrix M most 

commonly the facet based material averaging is used. We 

show an extended possibility: A field-based material 

averaging approach. 

A. Facet-Based Material Averaging 

The standard for the approximation of curved material 

boundaries is a staircase model and the facet-based 

averaging of permittivities. Up to four different 

permittivities are averaged by weighting them by the 

corresponding dual facets 
jA (see Fig. 1b).  

 a)                b) 
 
Fig. 1. a) Staircase effect, with a filling strategy based on the center of 

the mesh cells, allowing completely filled meshcells, only b) Facet-based 

material averaging of up to four different permittivities. 

 

B. Field-Based Material Averaging 

For the field-based averaging method we use the a priori 

available knowledge about the field behavior near specific 

geometrical shapes. In order to modify 
M  we can 

evaluate the integrals in (1) using this analytical knowledge 

of the fields and replace one entry in the permittivity matrix 

by the element-wise relation of 
id  and ie . In the current 

implementation, we replace all those entries from the 

standard scheme (II.A.) where an averaging has taken 

place. 

III. COMPUTATIONAL SETUP 

Benchmark problems for convergence studies need a 

reliable reference for comparison reasons. Here, we 

calculate the scattering at a dielectric cylinder. The 

analytical solution is the sum of an incident plane wave 
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expanded in cylindrical functions and the scattered field 
i s

z z zE E E   which reads outside the dielectric cylinder [5] 
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inside the cylinder. nJ  and (2)

nH  are Bessel and Hankel 

functions of second kind and order n. The radius of the 

cylinder is given by 0  and the wave numbers 
cylk  and 

0k  

are defined inside and outside the cylinder. The coefficients 

nc  and 
nd  are obtained by matching the continuity 

conditions resulting from Maxwell’s equations. The 

analytical result of (4) and (5) is shown in Fig. 2 and 

Fig. 3a). In order to compare to the analytical results, we 

imprint the analytical solution as equivalent currents at the 

calculation domain boundaries. The curl-curl equation for 

the electric grid voltage e  and the exciting currents j  

reads  

 1 2

µ j

   CM C M e j ,                        (6) 

where the discrete grid current j  on the right hand side 

include these equivalent currents as derived from the 

analytical solution (4) at the boundaries. 

 

            
Fig. 2. Setup of wave scattering at a dielectric cylinder and resulting 

analytical solution from [5]. The black lines mark the final calculation 

domain. 

IV. NUMERICAL RESULTS 

The numerical setup and the polarization and the direction 

of the exciting plane wave is given in Fig. 2. As dimensions 

we choose 1ma  , 0 4

a  , 11.56r   and -14
0 m .

a
k   

We solve (6) using laboratory codes in Matlab. As a first 

test, the field behavior used for the modified entries in 
M  

is assumed to be proportional to a mode of azimuthally 

zeroth order (see Fig. 3b), which results from neglecting the 

0( )nJ k   term of the incident wave in (4) and reducing the 

sum to the 0n   term. The integration of the electric grid 

flux in (1) over a dual grid facet is done numerically.  

Fig. 4 shows the convergence behavior (maximum norm 

of the deviation of the electric field) for different mesh and 

averaging types. For the analytical result n=60 azimuthal 

orders are superposed. The parameter h is the step width of 

the equidistant Cartesian grid. The standard convergence 

behavior is obtained by a staircase approximation, in which 

no partially filled meshcells occur. The simulations using 

the modified permittivity coefficients based on the 

analytical field behavior show a reduced overall error. 

 

 a)       b) 
Fig. 3. a) Complete analytic solution Ez in the vicinity of the cylinder. 

b) The azimuthally zeroth order mode in Ez only is used for the field-based 

averaging approach. 
 

 
Fig. 4. Convergence behavior for different setups. The staircase results 

(*) are shown for reference. The new introduced correction by the field-
based material averaging reduces the absolute error (O). Introducing an 

influence band 
0 0

/ 4   reduces the error even more (□). 

V. CONCLUSIONS 

The potential of accuracy enhancement of field-based 

material averaging at the boundaries of simple geometrical 

shapes has been investigated. A priori available knowledge 

about the field distribution in the vicinity of simple 

geometrical shapes is taken into account to derive modified 

permittivity matrices. The absolute error in the convergence 

curve of staircase approximations is reduced by using this 

kind of material averaging. 

Following an idea introduced in [4], the modifications 

of the permittivity matrix are not limited to direct with the 

cylinder boundaries linked meshcells. It is possible to 

change a few matrix entries in a band of influence in the 

vicinity of the cylinder. First results of this approach look 

very promising for a further reduction of the error. In a 

similar manner, higher order basis functions may be applied 

for the correction. 
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